

Summary of research findings

1. Research aims and objectives

This study aims to reduce the Technological Risk Perception (TRP) gap to increase the adoption of disruptive technologies by answering the following research questions -

- a) How does one's technological competency relate with technological risk perceptions?
- b) How can the technological risk perception gaps be reduced to increase the adoption of disruptive technologies and to maximize the potential of these technologies to improve the performance of industries?

To answer the research questions, this research aims to answer the following research objectives:

- (i) To identify the factors that impact the technological risk perception of an individual in the context of managing disruptive technologies;
- (ii) To identify the factors that impact the technological competency of an individual;
- (iii) To develop an assessment tool to assess technological risk perceptions in the context of managing disruptive technologies;
- (iv) To develop an assessment tool to assess an individual's technological competency;
- (v) To assess the relationship between technological competency and technological risk perception, and subsequently the technological risk perception gap;
- (vi) To explore the reasons for technological risk perception gap based on the various technological competency levels; and
- (vii) To develop risk communication strategies tailored for the various technological competency levels to reduce the technological risk perception gap.

The scope of IPUR seed fund covers objectives (i) and (ii).

2. Significance of study

The findings from this study are expected to contribute to knowledge and practice in the following ways:

- Lay the foundation to understand the underlying factors that determine one's TRP and TC, which can further drive the adoption of disruptive technologies
- Proposed risk communication strategies can help to provide a better understanding of how TRP gap can be reduced
- Guide governments, industries and organizations in transitioning towards new technologies beyond the Fourth Industrial Revolution
- The proposed KBTTAS can operationalize the assessment of one's TRP and TC to provide tailored risk communication strategies that can be undertaken by governments, industries or organizations to align individual perceived risks associated with technology adoption with experts' perceived risks, reducing the resistance of end-users toward adopting disruptive technologies and encourage adoption of new technologies

3. Literature review

The study identified the factors influencing Project Manager's (PM) TRP (refer to Table 1 in Annex) and TC (refer to Table 2 in Annex) and developed a conceptual model of TRP and TC as shown in Figure 1.

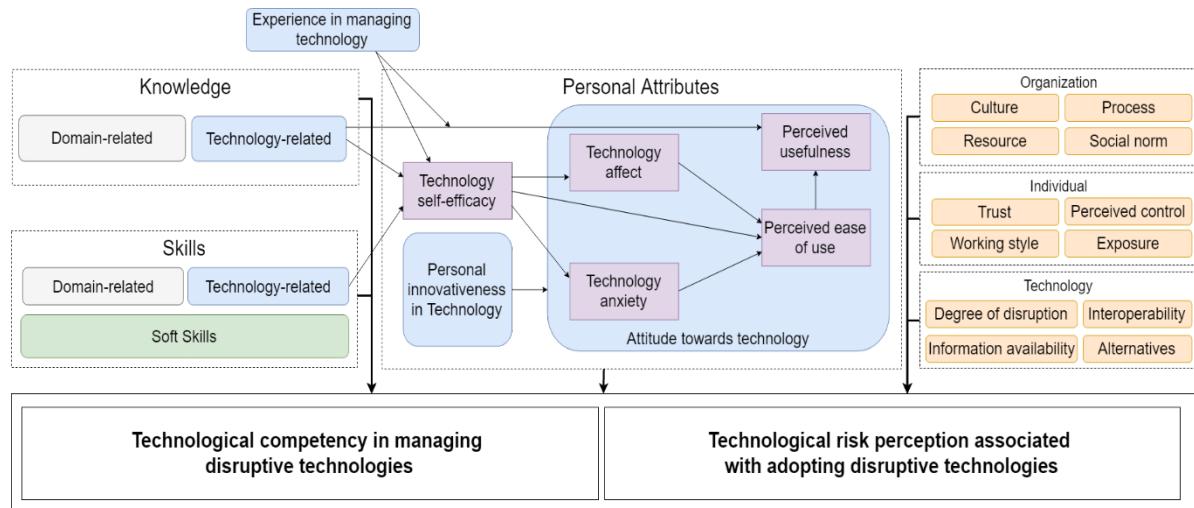


Figure 1. Conceptual model of TRP and TC

4. Research methods and data presentation

The study adopted the research approach as shown in Figure A in Annex. To analyse the data collected from the survey questionnaire, the following data analysis methods were conducted:

- Frequency analysis – understand profile of respondents, organisations and projects
- Shapiro-wilk test – test for normality to determine if parametric or non-parametric tests should be conducted
- One-sample Wilcoxon signed-rank test – test for significance of factors contributing to TRP and TC
- Kruskal-Wallis test – test for differences among three or more groups
- Mann-Whitney U test – test for differences among two groups
- Spearman Rank Correlation Coefficient (SRCC) – test for statistical dependence of relationship between two sets of data
- Factor analysis – group factors that determine one's TRP
- PLS-SEM – analyze structural relationships among variables

A total of 48 valid responses were received and the profile of the respondents, organisations and projects are presented in Table 3 in Annex.

5. Data analysis and discussion

The study analyzed the following:

- Experience and level of familiarity of respondents in disruptive technologies

It was found that:

- Practitioners have little experience in the disruptive technologies
- Practitioners have low level of familiarity with the technologies except for familiarity with VR

The relatively higher level of familiarity with VR may be due to the mandated use of Building Information Modeling (BIM).

- Factors influencing Technological Risk Perception

Applicability, impact and overall significance of all factors were found to be significant, except for:

- Applicability of perceived learning opportunities
- Impact of autonomy of decision making in applying technology in the workplace
- Applicability and impact of organizational red tapes, peer influence, existing organizational communications system, need for improvements in project quality, availability of alternatives
- Applicability, impact and overall significance of traditional media exposure and social media exposure

This finding is expected as project managers are required to work with specified technologies in the contract and typically do not have the autonomy to decide for the use of specific technologies in projects in the Singapore construction industry.

- Preliminary PLS-SEM model for TRP (based on overall significance)

The preliminary PLS-SEM model for TRP based on the overall significance was developed according to the results of the factor analysis conducted. The preliminary PLS-SEM model for TRP is shown in Figure 2.

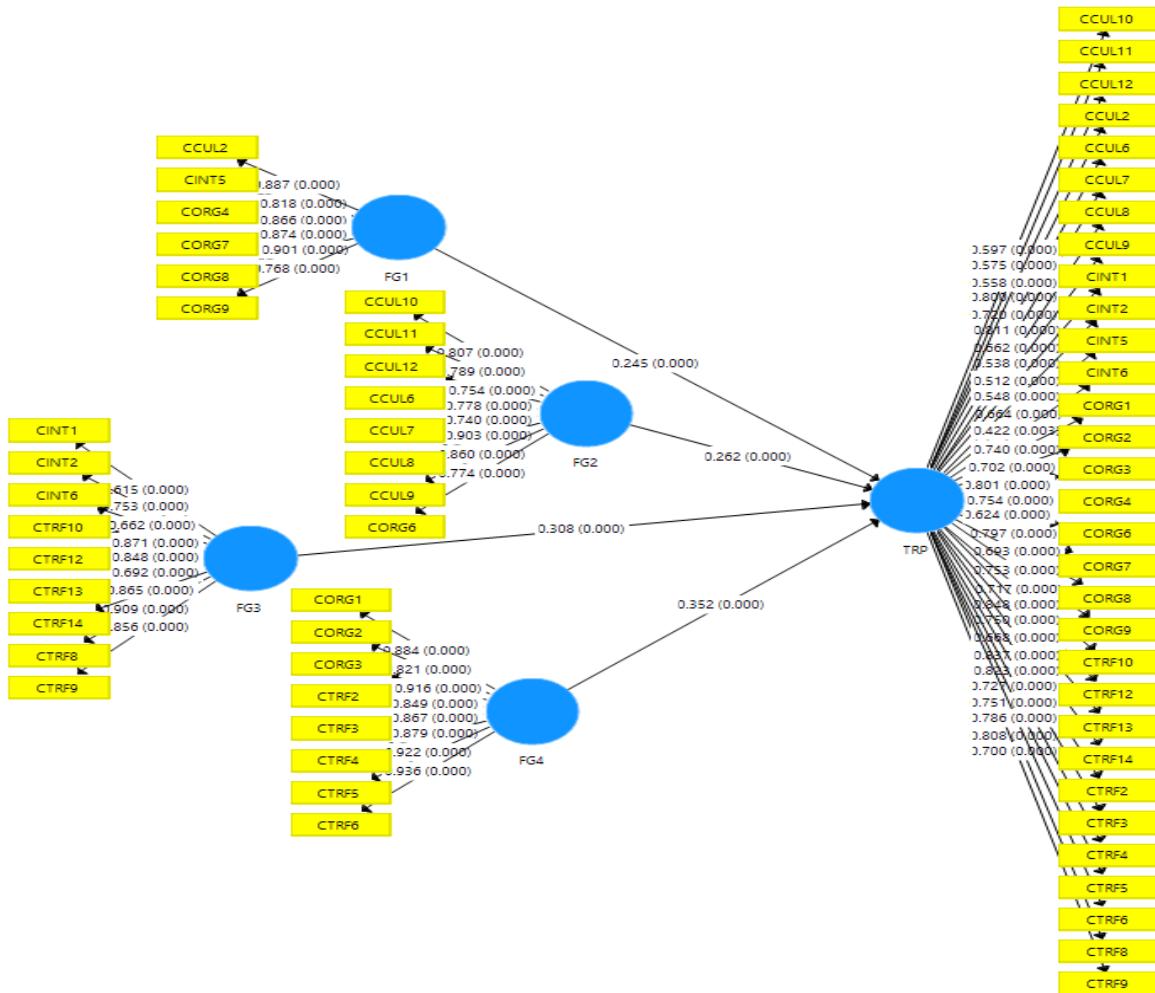


Figure 2. Preliminary PLS-SEM model for TRP

- Factors influencing Technological Competency
 - Knowledge
 - All project management knowledge areas were found to be significant in managing both conventional projects and in projects with disruptive technologies
 - Knowledge in each project management knowledge areas were perceived to be equally important in managing conventional projects and projects with disruptive technologies
 - Skills
 - All skills were found to be significant in managing both conventional projects and projects with disruptive technologies
 - Top three skills required to manage conventional projects were found to be:
 - Project management skills
 - Planning and organization skills
 - Communication skills
 - Top three skills required to manage projects with disruptive technologies were found to be:

- Leadership
 - Problem solving skills
 - Active learning skills
- Importance of several skills were found to be statistically more important in managing projects with disruptive technologies
 - Technological skills – PMs are required to have the ability to utilize the technology to complete a task
 - Information management skills – PMs are required to manage the inputs and outputs from the technologies so that data input are of good quality and to be able to understand and utilise the information outputs to achieve project objectives
 - Active learning – PMs need to constantly learn how to utilize the technologies to manage changes and complexities in projects through experimentation
 - Creativity – PMs need to be creative in utilising the technologies to achieve project objectives as the use of the technologies are still in its infancy
 - Flexibility – PMs need to be flexible and adapt according to the situations arising from the use of the disruptive technologies as there is no existing standards or guidelines overarching the implementation of the technologies
 - Strategic planning – PMs need to both inspire followers and be able to strategically plan for the use of the technologies to achieve project objectives
 - Ethical awareness – The technologies can collect information bound to individuals, hence PMs need to be aware of the ethical and legal aspects from utilising the technologies
- Attitude towards technology
 - Applicability, impact and overall significance of all factors were found to be significant in contributing to one's attitude towards technology except for:
 - Applicability of afraid to become dependent on disruptive technologies and lose some reasoning skills

The finding demonstrates that reasoning skills may instead be used to interpret the outputs from the technologies.
- Preliminary PLS-SEM Model (based on overall significance)
 The preliminary PLS-SEM model for TC based on the overall significance was developed and is shown in Figure 3.

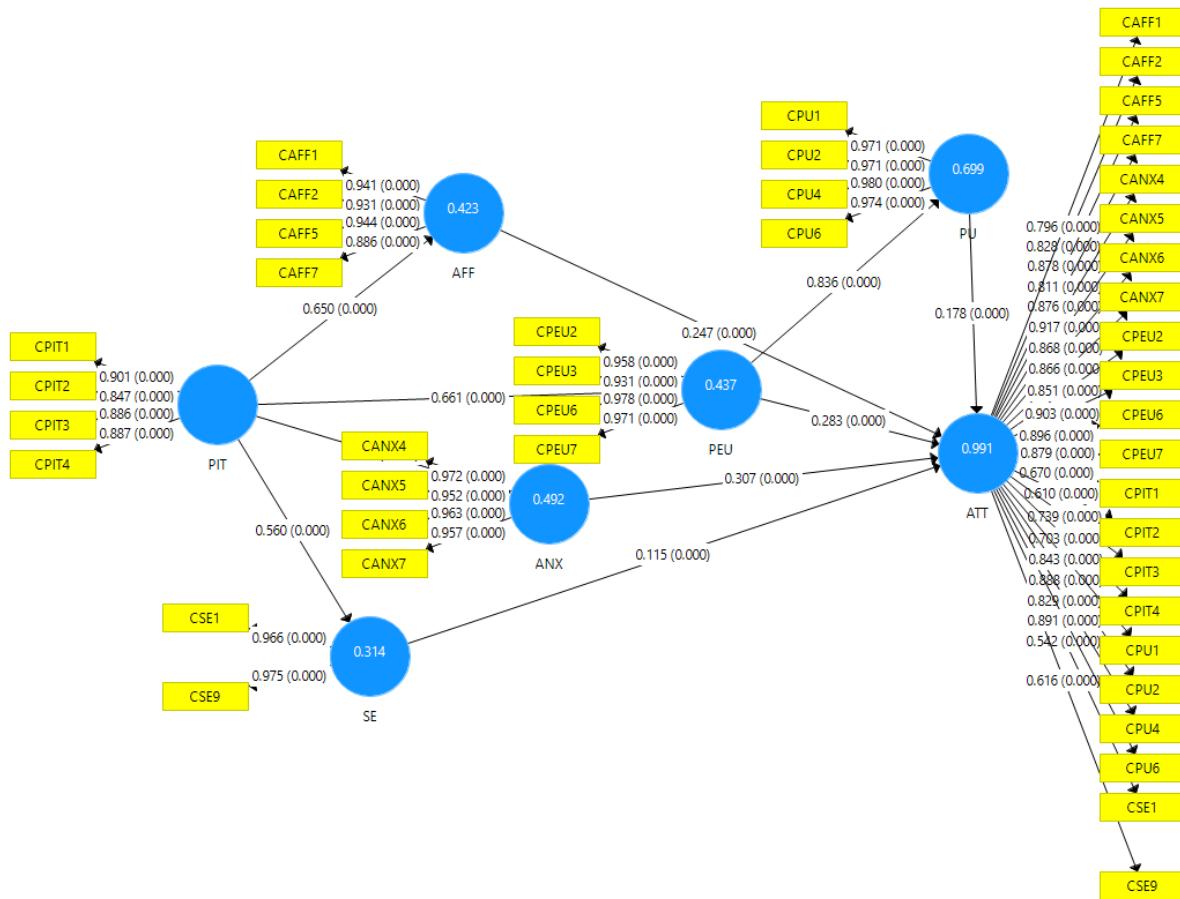


Figure 3. Preliminary PLS-SEM

- TRP-TC relationships

It was found that:

- Respondents had moderate self-assessed TC level and are moderately risk neutral
- No statistically significant relationships between respondents' risk attitude and level of self-assessed TC level

- Perceived differences among respondents of different risk attitude and self-assessed level of TC

- Several statistically significant differences for perceived importance of knowledge, skills and applicability, impact and overall significance factors contributing to attitude towards technologies and TRP were found among respondents of different risk attitude
- Several statistically significant dependency for perceived importance of knowledge, skills and applicability, impact and overall significance factors contributing to attitude towards technologies and TRP were found among respondents of different risk attitude
- Several statistically significant differences for perceived importance of skills and applicability, impact and overall significance factors contributing to attitude towards technologies and TRP were found among respondents of different self-assessed TC levels

- Several statistically significant dependency for perceived importance of knowledge, skills and applicability, impact and overall significance factors contributing to attitude towards technologies and TRP were found among respondents of different self-assessed TC levels
- Further studies warranted due to limited responses per level of risk attitude and TC

6. Development of tool

The proposed architecture for KBTTAS is shown in Figure 4. The wireframes for the proposed KBTTAS are provided in Figures B to E in the Annex. The wireframes will be used as a reference to develop the front end of the web-based KBTTAS.

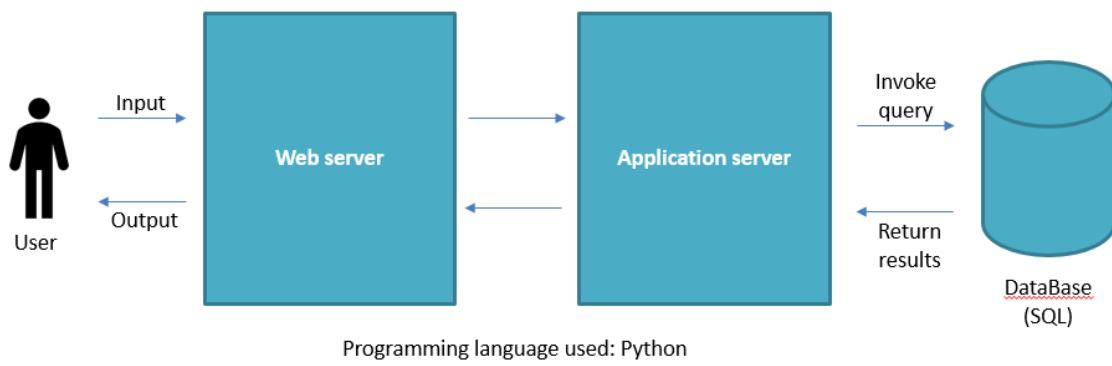


Figure 4. Proposed architecture for KBTTAS

Annex: Tables, Figures & References

Table 1. Factors influencing Project Manager's Technological Risk Perception

Factor	References
Perceived value of technology	(Addae et al., 2019; AlHogail, 2018; Byrne et al., 2016; Choi & Ji, 2015; de Groot et al., 2020; Dixon et al., 2018; El-Haddadeh, 2020; Fox-Glassman & Weber, 2016; Gupta et al., 2012; Hsu & Lin, 2018; Huang et al., 2011; Kim & Jung, 2019; Larsson et al., 2019; Mathews et al., 2018; Peters et al., 2004; Renn & Benighaus, 2013; Roper & Tapinos, 2016; Siegrist et al., 2007; Sokolowska & Tyszka, 1995; Tosun, 2017; van Schaik et al., 2017; Weisenfeld & Ott, 2011; Weller et al., 2015)
Autonomy of decision making in applying technology	(AlHogail, 2018; Choi & Ji, 2015; Digmayer & Jakobs, 2016; Dixon et al., 2018; Drottz-Sjöberg & Sjöberg, 2010; El-Haddadeh, 2020; Hall et al., 2014; Ho & Watanabe, 2018; Huang et al., 2011; Kim & Jung, 2019; Mathews et al., 2018; Nelkin, 1989; Roper & Tapinos, 2016; Savage, 1993; Siegrist et al., 2007; Tosun, 2017; van Schaik et al., 2017; Weller et al., 2015)
Economic considerations	(Digmayer & Jakobs, 2016; El-Haddadeh, 2020; Hsu & Lin, 2018; Jacquet & Stedman, 2014; Kim & Jung, 2019; Larsson et al., 2019; Mathews et al., 2018; Nelkin, 1989; Paluch & Wunderlich, 2016; Renn & Benighaus, 2013; Roper & Tapinos, 2016; Sadeh & Dvir, 2020; Sokolowska & Tyszka, 1995)
Logistical considerations	(Digmayer & Jakobs, 2016; El-Haddadeh, 2020; Mathews et al., 2018; Renn & Benighaus, 2013; Sadeh & Dvir, 2020)
Operational considerations	(Addae et al., 2019; Digmayer & Jakobs, 2016; El-Haddadeh, 2020; Mathews et al., 2018; Paluch & Wunderlich, 2016; Renn & Benighaus, 2013; Sadeh & Dvir, 2020)
Enhancements in risk communications among team	(El-Haddadeh, 2020; Hsu & Lin, 2018; Kim & Jung, 2019)
Interoperability of technology	(El-Haddadeh, 2020; Hall et al., 2014; Larsson et al., 2019; Mathews et al., 2018)
Monetary cost	(Digmayer & Jakobs, 2016; Drottz-Sjöberg & Sjöberg, 2010; El-Haddadeh, 2020; Hall et al., 2014; Hsu & Lin, 2018; Kim & Jung, 2019; Mathews et al., 2018; Paluch & Wunderlich, 2016; Renn & Benighaus, 2013; Roper & Tapinos, 2016; Sadeh & Dvir, 2020; Stoutenborough & Vedlitz, 2016)

Time investment	(Addae et al., 2019; Drottz-Sjöberg & Sjöberg, 2010; Hall et al., 2014; Mathews et al., 2018; Renn & Benighaus, 2013; Roper & Tapinos, 2016)
Labour investment	(Drottz-Sjöberg & Sjöberg, 2010; El-Haddadeh, 2020; Hall et al., 2014; Mathews et al., 2018; Renn & Benighaus, 2013; Sadeh & Dvir, 2020)
Stakeholder heterogeneity	(de Groot et al., 2020; Hall et al., 2014; Larsson et al., 2019)
Prior knowledge of the technology	(Byrne et al., 2016; Choi & Ji, 2015; Digmayer & Jakobs, 2016; Drottz-Sjöberg & Sjöberg, 2010; El-Haddadeh, 2020; Gupta et al., 2012; Ho & Watanabe, 2018; Huang et al., 2011; Larsson et al., 2019; X. Lu et al., 2015; Mathews et al., 2018; Nelkin, 1989; Peters et al., 2004; Raue et al., 2019; Renn & Benighaus, 2013; Siegrist et al., 2007; van Schaik et al., 2017; Weisenfeld & Ott, 2011; Xie et al., 2011)
Innovation radicalness	(Choi & Ji, 2015; de Groot et al., 2020; Digmayer & Jakobs, 2016; Drottz-Sjöberg & Sjöberg, 2010; El-Haddadeh, 2020; Huang et al., 2011; Larsson et al., 2019; Roper & Tapinos, 2016; Sadeh & Dvir, 2020; Weisenfeld & Ott, 2011)
Degree of trust in technology deliverables	(AlHogail, 2018; de Groot et al., 2020; Dixon et al., 2018; Hall et al., 2014; Larsson et al., 2019; Mathews et al., 2018; Paluch & Wunderlich, 2016; Renn & Benighaus, 2013; Siegrist et al., 2007; Wang & Zhao, 2019)
Knowledge gap in use of technology	(Addae et al., 2019; de Groot et al., 2020; El-Haddadeh, 2020; Hall et al., 2014; Ho & Watanabe, 2018; Hsu & Lin, 2018; León-Pérez et al., 2020; Mathews et al., 2018; Raue et al., 2019; Renn & Benighaus, 2013; Sadeh & Dvir, 2020; Stoutenborough & Vedlitz, 2016; Wang & Zhao, 2019)
Usability of the technology	(Addae et al., 2019; AlHogail, 2018; Choi & Ji, 2015; El-Haddadeh, 2020; Hsu & Lin, 2018; Huang et al., 2011; Paluch & Wunderlich, 2016; Roper & Tapinos, 2016; Tosun, 2017; van Schaik et al., 2017)
Product lifetime of the technology	(de Groot et al., 2020; Digmayer & Jakobs, 2016; Drottz-Sjöberg & Sjöberg, 2010; Hall et al., 2014; Roper & Tapinos, 2016; Sadeh & Dvir, 2020; Wang & Zhao, 2019; Weisenfeld & Ott, 2011; Xie et al., 2011)
Supervisory control	(Huang et al., 2011; Kim & Jung, 2019; Mathews et al., 2018; Paluch & Wunderlich, 2016)
Technological stigma	(Byrne et al., 2016; El-Haddadeh, 2020; Garrick, 1998; Peters et al., 2004; Renn & Benighaus,

	2013; Wang & Zhao, 2019; Weisenfeld & Ott, 2011; Weller et al., 2015)
Technological hazard	(Digmayer & Jakobs, 2016; Dixon et al., 2018; Drottz-Sjöberg & Sjöberg, 2010; Hall et al., 2014; Huang et al., 2011; Hung & Wang, 2011; Kim & Jung, 2019; Paluch & Wunderlich, 2016; Sadeh & Dvir, 2020; Savage, 1993; Siegrist et al., 2007; Slovic, 2016; Sokolowska & Tyszka, 1995; Tosun, 2017; van Schaik et al., 2017; Wang & Zhao, 2019; Xie et al., 2011)
Degree of disruption brought by the technology	(Byrne et al., 2016; Choi & Ji, 2015; de Groot et al., 2020; Digmayer & Jakobs, 2016; Drottz-Sjöberg & Sjöberg, 2010; Huang et al., 2011; Larsson et al., 2019; Roper & Tapinos, 2016; Sadeh & Dvir, 2020; Stoutenborough & Vedlitz, 2016; van Schaik et al., 2017; Xie et al., 2011)
Availability of alternatives	(Drottz-Sjöberg & Sjöberg, 2010; Garrick, 1998; Tosun, 2017)
Perceived learning opportunities	(Mathews et al., 2018; Roper & Tapinos, 2016; Weller et al., 2015)
Perceived ease of use	(Addae et al., 2019; AlHogail, 2018; Biucky et al., 2017; Choi & Ji, 2015; El-Haddadeh, 2020; Hsu & Lin, 2018; Huang et al., 2011)
Peer influences	(Addae et al., 2019; AlHogail, 2018; Choi & Ji, 2015; de Groot et al., 2020; Dixon et al., 2018; Drottz-Sjöberg & Sjöberg, 2010; El-Haddadeh, 2020; Friedkin, 2001; Hall et al., 2014; Hung & Wang, 2011; Jacquet & Stedman, 2014; Kim & Jung, 2019; Larsson et al., 2019; Nelkin, 1989; Paluch & Wunderlich, 2016; Renn & Benighaus, 2013; Siegrist et al., 2007; Sokolowska & Tyszka, 1995; Weisenfeld & Ott, 2011; Weller et al., 2015; Xie et al., 2011)
Existing organisational communication system	(Drottz-Sjöberg & Sjöberg, 2010; El-Haddadeh, 2020; Kim & Jung, 2019; Larsson et al., 2019; Mathews et al., 2018; Renn & Benighaus, 2013; Roper & Tapinos, 2016; Sadeh & Dvir, 2020; Stoutenborough & Vedlitz, 2016)
Ability to integrate the technology with existing operating processes	(Drottz-Sjöberg & Sjöberg, 2010; El-Haddadeh, 2020; Kim & Jung, 2019; Larsson et al., 2019; Mathews et al., 2018; Roper & Tapinos, 2016; Sadeh & Dvir, 2020)
Privacy risk	(Addae et al., 2019; AlHogail, 2018; Biucky et al., 2017; Digmayer & Jakobs, 2016; El-Haddadeh, 2020; Fox & Connolly, 2018; Hsu & Lin, 2018; Huang et al., 2011; Paluch & Wunderlich, 2016; van Schaik et al., 2017)
Increased learning curve	(El-Haddadeh, 2020; Paluch & Wunderlich, 2016)

Perceived job discrimination	(El-Haddadeh, 2020; Paluch & Wunderlich, 2016; Weller et al., 2015)
Compatibility of technology with personal working styles	(Byrne et al., 2016; El-Haddadeh, 2020; Huang et al., 2011; Kim & Jung, 2019; Larsson et al., 2019; Mathews et al., 2018; Roper & Tapinos, 2016; van Schaik et al., 2017; Weller et al., 2015)
Scale of implementation	(Renn & Benighaus, 2013; Roper & Tapinos, 2016; Sadeh & Dvir, 2020; Stoutenborough & Vedlitz, 2016)
Availability of technological support	(El-Haddadeh, 2020; Mathews et al., 2018; Paluch & Wunderlich, 2016)
Organizational red tapes	(El-Haddadeh, 2020; Kim & Jung, 2019; Larsson et al., 2019; Mathews et al., 2018; Paluch & Wunderlich, 2016; Renn & Benighaus, 2013; Stoutenborough & Vedlitz, 2016)
Need for improvements in project quality	(El-Haddadeh, 2020; Kim & Jung, 2019; Roper & Tapinos, 2016; Sadeh & Dvir, 2020)
Traditional media exposure	(Byrne et al., 2016; Drottz-Sjöberg & Sjöberg, 2010; Garrick, 1998; Huang et al., 2011; X. Lu et al., 2015; Nelkin, 1989; Renn & Benighaus, 2013; Slovic, 2016; Stoutenborough & Vedlitz, 2016; Tosun, 2017; van Schaik et al., 2017; Weisenfeld & Ott, 2011; Xie et al., 2011)
Social media exposure	(Byrne et al., 2016; Drottz-Sjöberg & Sjöberg, 2010; Garrick, 1998; Huang et al., 2011; X. Lu et al., 2015; Nelkin, 1989; Renn & Benighaus, 2013; Slovic, 2016; Stoutenborough & Vedlitz, 2016; Tosun, 2017; van Schaik et al., 2017; Weisenfeld & Ott, 2011; Xie et al., 2011)

Table 2. Factors influencing Project Manager's Technological Competency

Technological Competency Component	Factor	Reference
Knowledge in project management	Project integration management	(Project Management Institute, 2017)
	Project scope management	
	Project schedule management	
	Project cost management	
	Project quality management	
	Project resource management	
	Project communications management	
	Project risk management	
	Project procurement management	
	Project stakeholder management	
Knowledge in disruptive technologies	Cyber-physical system	(Dallasega et al., 2018; Ghobakhloo, 2018; Jabbour et al., 2018; Kamble et al., 2018; Y. Lu, 2017; Müller et al., 2018; Oesterreich & Teuteberg, 2016; Pereira & Romero, 2017; Stock et al., 2018)
	Internet-of-things	
	Big data	
	Artificial intelligence	
	Autonomous vehicles	
	Robotics	
	Augmented reality	
	Virtual reality	
	Additive manufacturing	
	3D imaging	
Skills	Project management skills	(Alvarenga et al., 2019; Chen et al., 2019; Edum-Fotwe & McCaffer, 2000; El-Sabaa, 2001; Hwang & Ng, 2013; Succar et al., 2013; Udo & Koppensteiner, 2004)
	Technical and operational technology skills	(Alvarenga et al., 2019; Chen et al., 2019; El-Sabaa, 2001; Gann & Senker, 1998; Hwang & Ng, 2013; Succar et al., 2013; Van Deursen & Mossberger, 2018; Van Laar et al., 2017; Voogt & Roblin, 2012; World Economic Forum, 2018)
	Information management skills	(Chen et al., 2019; Dainty et al., 2004; Udo & Koppensteiner, 2004; Van Deursen & Mossberger, 2018; Van Laar et al., 2017; Voogt & Roblin, 2012; F. Zhang et al., 2013)
	Planning and organizing skills	(Alvarenga et al., 2019; Chen et al., 2019; El-Sabaa, 2001; Hwang & Ng, 2013; Odusami, 2002; Succar et al., 2013; Udo & Koppensteiner, 2004)

	Communication skills	(Alvarenga et al., 2019; Chen et al., 2019; Creasy & Anantatmula, 2013; Edum-Fotwe & McCaffer, 2000; El-Sabaa, 2001; Fisher, 2011; Gann & Senker, 1998; Hwang & Ng, 2013; Odusami, 2002; Udo & Koppensteiner, 2004; Van Deursen & Mossberger, 2018; Van Laar et al., 2017; Voogt & Roblin, 2012; F. Zhang et al., 2013; L. Zhang & Fan, 2013; Zuo et al., 2018)
	Social, cultural and organizational awareness	(Alvarenga et al., 2019; Chen et al., 2019; El-Sabaa, 2001; Fisher, 2011; Gann & Senker, 1998; Odusami, 2002; Van Laar et al., 2017; Voogt & Roblin, 2012; F. Zhang et al., 2013; L. Zhang & Fan, 2013; Zuo et al., 2018)
	Ethical awareness	(Van Laar et al., 2017)
	Creativity	(Creasy & Anantatmula, 2013; Fisher, 2011; Van Laar et al., 2017; Voogt & Roblin, 2012; World Economic Forum, 2018)
	Problem solving skills	(Alvarenga et al., 2019; Chen et al., 2019; Dainty et al., 2004; Edum-Fotwe & McCaffer, 2000; El-Sabaa, 2001; Fisher, 2011; Hwang & Ng, 2013; Odusami, 2002; Udo & Koppensteiner, 2004; Van Laar et al., 2017; Voogt & Roblin, 2012; World Economic Forum, 2018; F. Zhang et al., 2013; Zuo et al., 2018)
	Flexibility	(Alvarenga et al., 2019; Chen et al., 2019; Creasy & Anantatmula, 2013; Fisher, 2011; Van Laar et al., 2017; L. Zhang & Fan, 2013; Zuo et al., 2018)
	Strategic planning skills	(Chen et al., 2019; Odusami, 2002; Succar et al., 2013; Udo & Koppensteiner, 2004; Van Deursen & Mossberger, 2018; Zuo et al., 2018)
	Active learning	(Van Laar et al., 2017; World Economic Forum, 2018)
	Leadership skills	(Alvarenga et al., 2019; Chen et al., 2019; Dainty et al., 2004; Edum-Fotwe & McCaffer, 2000; El-Sabaa, 2001; Fisher, 2011; Hwang & Ng, 2013; Odusami, 2002; Succar et al., 2013; Udo & Koppensteiner, 2004;

		World Economic Forum, 2018; F. Zhang et al., 2013; Zuo et al., 2018)
Social influence		(Alvarenga et al., 2019; Chen et al., 2019; Dainty et al., 2004; El-Sabaa, 2001; Fisher, 2011; World Economic Forum, 2018; F. Zhang et al., 2013)
Composure		(Alvarenga et al., 2019; Chen et al., 2019; Creasy & Anantatmula, 2013; Dainty et al., 2004; Fisher, 2011; Hwang & Ng, 2013; Odusami, 2002; F. Zhang et al., 2013; L. Zhang & Fan, 2013)
Conflict management skills		(Alvarenga et al., 2019; Chen et al., 2019; Creasy & Anantatmula, 2013; Fisher, 2011; Udo & Koppensteiner, 2004; F. Zhang et al., 2013; L. Zhang & Fan, 2013)
Decision making skills		(Alvarenga et al., 2019; Edum-Fotwe & McCaffer, 2000; Hwang & Ng, 2013; Odusami, 2002; Succar et al., 2013; Udo & Koppensteiner, 2004; Zuo et al., 2018)
Delegation skills		(Alvarenga et al., 2019; Chen et al., 2019; Edum-Fotwe & McCaffer, 2000; El-Sabaa, 2001; Hwang & Ng, 2013; Odusami, 2002; Udo & Koppensteiner, 2004; F. Zhang et al., 2013; Zuo et al., 2018)
Motivation skills		(Chen et al., 2019; Dainty et al., 2004; Edum-Fotwe & McCaffer, 2000; El-Sabaa, 2001; Fisher, 2011; Odusami, 2002; F. Zhang et al., 2013; Zuo et al., 2018)
Negotiation skills		(Alvarenga et al., 2019; Chen et al., 2019; Edum-Fotwe & McCaffer, 2000; Hwang & Ng, 2013; Odusami, 2002; Udo & Koppensteiner, 2004; F. Zhang et al., 2013; Zuo et al., 2018)
Teamwork skills		(Alvarenga et al., 2019; Chen et al., 2019; Dainty et al., 2004; Edum-Fotwe & McCaffer, 2000; Fisher, 2011; Hwang & Ng, 2013; Odusami, 2002; Succar et al., 2013; Udo & Koppensteiner, 2004; Van Laar et al., 2017; Voogt & Roblin, 2012; F. Zhang et al., 2013; L.

		Zhang & Fan, 2013; Zuo et al., 2018)
	Teambuilding skills	(Alvarenga et al., 2019; Chen et al., 2019; Fisher, 2011; Odusami, 2002; Udo & Koppensteiner, 2004; F. Zhang et al., 2013; Zuo et al., 2018)
	Initiative	(Alvarenga et al., 2019; Dainty et al., 2004; F. Zhang et al., 2013; Zuo et al., 2018)
Technology self-efficacy	I could complete a job task using the technology...	(Compeau & Higgins, 1995; Venkatesh et al., 2003; Venkatesh & Davis, 1996)
	If there was no one around to tell me what to do as I go	
	If I had only the user manuals for reference	
	If I had seen someone else using it before trying it myself	
	If I could call someone for help if I got stuck	
	If someone else had helped me get started	
	If I had a lot of time to complete the job for which the technology was provided for	
	If I had just the built-in help facility for assistance	
	If someone showed me how to do it first	
	If I had never used a technology like it before	
Technology affect	If I had used similar technology before to do the same job	(Venkatesh et al., 2003)
	Finding that disruptive technologies make work more interesting	
	Feeling pleasant during the actual process of using the disruptive technology	
	Looking forward to the aspects of the job that require the use of disruptive technologies	
	Liking to work with disruptive technologies	
	Enjoying the use of the disruptive technologies	
	Thinking that disruptive technologies are necessary tools in work settings	(Heinssen et al., 1987)

	Having fun using the disruptive technology	(Venkatesh, 2000; Venkatesh & Bala, 2008)
Technology anxiety	Feeling scared to think that a lot of information could be lost by hitting the wrong key when using the disruptive technology	(Heinssen et al., 1987; Venkatesh et al., 2003)
	Feeling insecure about your ability to interpret an outcome from disruptive technologies	(Heinssen et al., 1987)
	Afraid to become dependent on disruptive technologies and lose some reasoning skills	(Heinssen et al., 1987)
	Feeling apprehensive about using the disruptive technology	(Heinssen et al., 1987; Venkatesh et al., 2003)
	Thinking that disruptive technologies are frustrating to work with	(Nickell & Pinto, 1986)
	Feeling hesitant to use disruptive technologies for fear of making mistakes that cannot be corrected	(Heinssen et al., 1987; Venkatesh et al., 2003)
	Feeling nervous or anxious working with disruptive technologies	(Venkatesh, 2000; Venkatesh & Bala, 2008)
	Feeling intimidated or overwhelmed by disruptive technologies	(Heinssen et al., 1987; Nickell & Pinto, 1986; Venkatesh et al., 2003)
	Feeling uncomfortable using disruptive technologies (potentially due to physical factors/ limitations of the technologies)	(Nickell & Pinto, 1986; Venkatesh, 2000; Venkatesh & Bala, 2008)
Perceived usefulness	Thinking that the use of disruptive technologies would enhance job effectiveness	(Davis, 1989; Venkatesh, 2000; Venkatesh & Bala, 2008; Venkatesh & Davis, 2000)
	Thinking that the use of disruptive technologies would make it easier to do a job	(Davis, 1989)
	Thinking that the use of disruptive technologies would increase productivity	(Davis, 1989; Venkatesh, 2000; Venkatesh & Bala, 2008; Venkatesh & Davis, 2000)
	Thinking that the use of disruptive technologies would enable you to accomplish tasks more quickly	(Davis, 1989; Venkatesh et al., 2003)
	Thinking that the use of disruptive technologies would improve job performance	(Davis, 1989; Venkatesh, 2000; Venkatesh & Bala, 2008; Venkatesh & Davis, 2000)

	Overall, finding disruptive technologies useful in a job	(Davis, 1989; Venkatesh et al., 2003; Venkatesh & Bala, 2008; Venkatesh & Davis, 2000)
Perceived ease of use	Finding the disruptive technology to be flexible to interact with	(Davis, 1989)
	Finding that not a lot of mental effort is required when interacting with the disruptive technology	(Davis, 1989; Venkatesh, 2000; Venkatesh & Davis, 2000)
	Finding the interaction with the disruptive technology to be clear and understandable	(Davis, 1989; Venkatesh, 2000; Venkatesh et al., 2003; Venkatesh & Bala, 2008)
	Finding it easy to become skilful at using the disruptive technology	(Davis, 1989; Venkatesh et al., 2003)
	Finding it easy to get the disruptive technology to do what you want it to do	(Davis, 1989; Venkatesh, 2000; Venkatesh & Bala, 2008)
	Finding it easy to learn to use the disruptive technology	(Davis, 1989; Venkatesh et al., 2003)
	Overall, finding the disruptive technology easy to use	(Davis, 1989; Venkatesh et al., 2003)
Personal innovativeness in technology	Look for ways to experiment with new technologies	(Agarwal & Prasad, 1998)
	Is usually the first among peers to try out new technologies	
	Is usually hesitant to try out new technologies	
	Enjoy experimenting with new technologies	

Table 3. Profile of respondents, organizations and projects

		Frequency	Percentage (%)
Respondent's job role	Project manager	48	100
Respondent's years of experience in the construction industry	Less than 3 years	7	14.6
	3 to 5 years	6	12.5
	6 to 10 years	4	8.3
	11 to 15 years	8	16.7
	16 to 20 years	7	14.6
	More than 20 years	16	33.3
Respondent's years of experience in current role	Less than 3 years	18	37.5
	3 to 5 years	8	16.7
	6 to 10 years	11	22.9
	More than 10 years	11	22.9
Gender	Female	10	20.8
	Male	38	79.2
Education	Diploma and below	13	27.1
	Bachelor	20	41.7
	Postgraduate	16	33.3
Age	25 to 34	15	31.3
	35 to 44	15	31.3
	45 to 54	10	20.8
	55 to 64	8	16.7
Experience with disruptive technologies	Yes	35	72.9
	No	13	27.1
Organization domain	Consultant	8	16.7
	Contractor	22	45.8
	Developer	10	20.8
	Government agency	8	16.7
Organization's years of experience in construction industry	Less than 10 years	7	14.6
	10 to 20 years	9	18.8
	21 to 30 years	13	27.1
	More than 30 years	19	39.6
Organization size	Small and medium enterprise	26	54.2
	Large enterprise	14	29.2
	Government agency	8	16.7
Experience with disruptive technologies	Yes	33	68.6
	No	15	31.3
Number of projects respondents are involved in	Conventional projects	251	64.7
	Projects with at least one disruptive technology	137	35.3
Number of projects organizations are involved in	Conventional projects	1049	81.2
	Projects with at least one disruptive technology	243	18.8

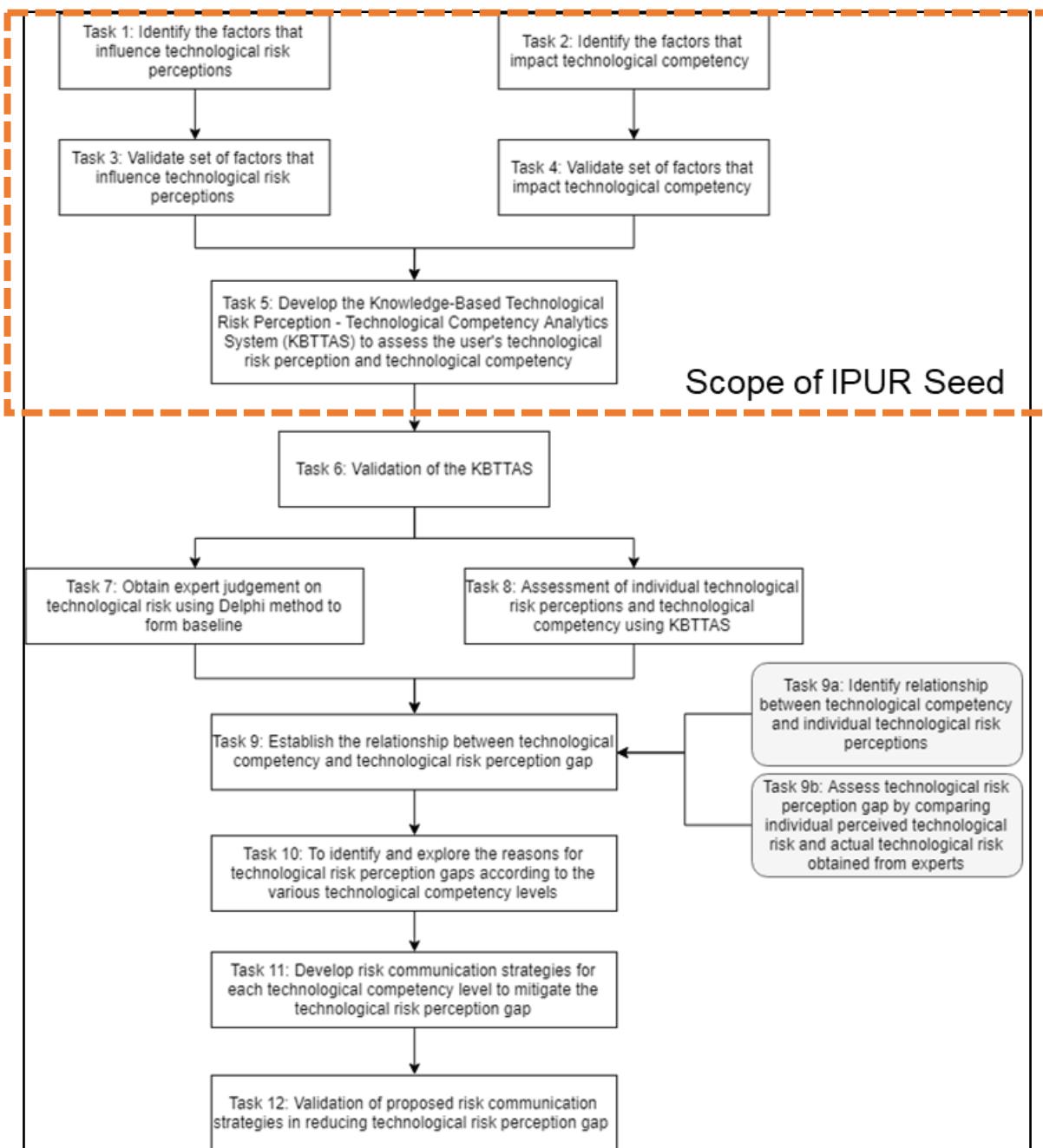


Figure A. Research Approach

Knowledge-based Technological Risk Perception - Technological Competency Analytics System

The Knowledge-based Technological Risk Perception - Technological Competency Analytics System (KBTTAS) allows you to assess your technological risk perception and technological competency, and receive tailored recommendations to reduce your technological risk perception gap and improve your performance when adopting and managing new technologies.

The assessment will take about 15 minutes and will assess three main aspects - your self-assessed level of proficiency in specified knowledge, skills, and attitude towards technologies.

[Start](#)

Section 1: Assessing the level of proficiency in knowledge factors

This section requires you to self-assess the level of proficiency of knowledge in specified project management knowledge areas and disruptive technologies.
Please rate your level of proficiency using a scale of 1 to 10 (1 = not proficient at all, 10 = very proficient).

Project integration management XXXXXX	<input type="button" value="6 ▾"/>
Project scope management XXXXXX	<input type="button" value="1 ▾"/>
Project schedule management XXXXXX	<input type="button" value="8 ▾"/>
Project cost management XXXXXX	<input type="button" value="7 ▾"/>
Project quality management XXXXXX	<input type="button" value="6 ▾"/>
Project resource management XXXXXX	<input type="button" value="5 ▾"/>
Project communications management XXXXXX	<input type="button" value="3 ▾"/>

Figure B. Introduction page

NUS Logo

Register for an account

Save your results and access it again.

Name

E-mail

Re-enter Email

Password

Re-enter Password

[Forgot?](#)

Log in

Access your results.

E-mail

Password

[Forgot?](#)

[Submit](#)

Figure C. Login and registration page

NUS Logo

Knowledge-based Technological Risk Perception - Technological Competency Analytics System

The Knowledge-based Technological Risk Perception - Technological Competency Analytics System (KBTAS) allows you to assess your technological risk perception and technological competency, and receive tailored recommendations to reduce your technological risk perception gap and improve your performance when adopting and managing new technologies.

The assessment will take about 15 minutes and will assess three main aspects - your self-assessed level of proficiency in specified knowledge, skills, and attitude towards technologies.

[Start](#)

Section 1: Assessing the level of proficiency in knowledge factors

This section requires you to self-assess the level of proficiency of knowledge in specified project management knowledge areas and disruptive technologies.

Please rate your level of proficiency using a scale of 1 to 10 (1 = not proficient at all, 10 = very proficient).

▼

Project integration management XXXXXX	<input style="width: 20px; border: 1px solid #ccc; border-radius: 5px; padding: 2px 5px;" type="text" value="6"/> ▼
Project scope management XXXXXX	<input style="width: 20px; border: 1px solid #ccc; border-radius: 5px; padding: 2px 5px;" type="text" value="1"/> ▼
Project schedule management XXXXXX	<input style="width: 20px; border: 1px solid #ccc; border-radius: 5px; padding: 2px 5px;" type="text" value="8"/> ▼
Project cost management XXXXXX	<input style="width: 20px; border: 1px solid #ccc; border-radius: 5px; padding: 2px 5px;" type="text" value="7"/> ▼
Project quality management XXXXXX	<input style="width: 20px; border: 1px solid #ccc; border-radius: 5px; padding: 2px 5px;" type="text" value="6"/> ▼
Project resource management XXXXXX	<input style="width: 20px; border: 1px solid #ccc; border-radius: 5px; padding: 2px 5px;" type="text" value="5"/> ▼
Project communications management XXXXXX	<input style="width: 20px; border: 1px solid #ccc; border-radius: 5px; padding: 2px 5px;" type="text" value="3"/> ▼

Figure D. Assessment page

Figure E. Results page

References

Addae, J. H., Sun, X., Towey, D., & Radenkovic, M. (2019). Exploring user behavioral data for adaptive cybersecurity. In *User Modeling and User-Adapted Interaction* (Vol. 29, Issue 3). Springer Netherlands. <https://doi.org/10.1007/s11257-019-09236-5>

Agarwal, R., & Prasad, J. (1998). A Conceptual and Operational Definition of Personal Innovativeness in the Domain of Information Technology. *Information Systems Research, 9*(2), 204–215. <https://doi.org/10.1287/isre.9.2.204>

AlHogail, A. (2018). Improving IoT Technology Adoption through Improving Consumer Trust. *Technologies, 6*(3), 64. <https://doi.org/10.3390/technologies6030064>

Alvarenga, J. C., Branco, R. R., Guedes, A. L. A., Soares, C. A. P., & E Silva, W. D. S. (2019). The project manager core competencies to project success. *International Journal of Managing Projects in Business*. <https://doi.org/10.1108/IJMPB-12-2018-0274>

Biucky, S. T., Abdolvand, N., & Harandi, S. R. (2017). The effects of perceived risk on social commerce adoption based on the tam model. *International Journal of Electronic Commerce Studies, 8*(2), 173–196. <https://doi.org/10.7903/ijecs.1538>

Byrne, Z. S., Dvorak, K. J., Peters, J. M., Ray, I., Howe, A., & Sanchez, D. (2016). From the user's perspective: Perceptions of risk relative to benefit associated with using the Internet. *Computers in Human Behavior, 59*, 456–468. <https://doi.org/10.1016/j.chb.2016.02.024>

Chen, T., Fu, M., Liu, R., Xu, X., Zhou, S., & Liu, B. (2019). How do project management competencies change within the project management career model in large Chinese construction companies? *International Journal of Project Management, 37*(3), 485–500. <https://doi.org/10.1016/j.ijproman.2018.12.002>

Choi, J. K., & Ji, Y. G. (2015). Investigating the Importance of Trust on Adopting an Autonomous Vehicle. *International Journal of Human-Computer Interaction, 31*(10), 692–702. <https://doi.org/10.1080/10447318.2015.1070549>

Compeau, D. R., & Higgins, C. A. (1995). Computer Self-Efficacy: Development of a Measure and Initial Test. *MIS Quarterly, 19*(2), 189. <https://doi.org/10.2307/249688>

Creasy, T., & Anantatmula, V. S. (2013). From Every Direction—How Personality Traits and Dimensions of Project Managers Can Conceptually Affect Project Success. *Project Management Journal, 44*(6), 36–51. <https://doi.org/10.1002/pmj.21372>

Dainty, A. R. J., Cheng, M. I., & Moore, D. R. (2004). A competency-based performance model for construction project managers. *Construction Management and Economics, 22*(8), 877–886. <https://doi.org/10.1080/0144619042000202726>

Dallasega, P., Rauch, E., & Linder, C. (2018). Industry 4.0 as an enabler of proximity for construction supply chains: A systematic literature review. *Computers in Industry, 99*, 205–225. <https://doi.org/10.1016/j.compind.2018.03.039>

Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. *MIS Quarterly, 13*(3), 319–340.

<https://doi.org/10.2307/249008>

de Groot, J. I. M., Schweiger, E., & Schubert, I. (2020). Social Influence, Risk and Benefit Perceptions, and the Acceptability of Risky Energy Technologies: An Explanatory Model of Nuclear Power Versus Shale Gas. *Risk Analysis*.
<https://doi.org/10.1111/risa.13457>

Digmayer, C., & Jakobs, E. M. (2016). Risk perception of complex technology innovations: Perspectives of experts and laymen. *IEEE International Professional Communication Conference, 2016-November*. <https://doi.org/10.1109/IPCC.2016.7740510>

Dixon, G., Hart, P. S., Clarke, C., O'Donnell, N. H., & Hmielowski, J. (2018). What drives support for self-driving car technology in the United States? *Journal of Risk Research*, 23(3), 275–287. <https://doi.org/10.1080/13669877.2018.1517384>

Drottz-Sjöberg, B. M., & Sjöberg, L. (2010). The perception of risks of technology. In *Springer Series in Reliability Engineering* (Vol. 19, pp. 255–273). Springer London.
https://doi.org/10.1007/978-1-84882-641-0_16

Edum-Fotwe, F. T., & McCaffer, R. (2000). Developing project management competency: perspectives from the construction industry. *International Journal of Project Management*, 18, 111–124.

El-Haddadeh, R. (2020). Digital Innovation Dynamics Influence on Organisational Adoption: The Case of Cloud Computing Services. *Information Systems Frontiers*, 22(4), 985–999.
<https://doi.org/10.1007/s10796-019-09912-2>

El-Sabaa, S. (2001). The skills and career path of an effective project manager. *International Journal of Project Management*, 19(1), 1–7. [https://doi.org/10.1016/S0263-7863\(99\)00034-4](https://doi.org/10.1016/S0263-7863(99)00034-4)

Fisher, E. (2011). What practitioners consider to be the skills and behaviours of an effective people project manager. *International Journal of Project Management*, 29(8), 994–1002. <https://doi.org/10.1016/j.ijproman.2010.09.002>

Fox-Glassman, K. T., & Weber, E. U. (2016). What makes risk acceptable? Revisiting the 1978 psychological dimensions of perceptions of technological risks. *Journal of Mathematical Psychology*, 75, 157–169. <https://doi.org/10.1016/j.jmp.2016.05.003>

Fox, G., & Connolly, R. (2018). Mobile health technology adoption across generations: Narrowing the digital divide. *Information Systems Journal*, 28(6), 995–1019.
<https://doi.org/10.1111/isj.12179>

Friedkin, N. E. (2001). Norm formation in social influence networks. *Social Networks*, 23(3), 167–189. [https://doi.org/10.1016/S0378-8733\(01\)00036-3](https://doi.org/10.1016/S0378-8733(01)00036-3)

Gann, D., & Senker, P. (1998). Construction skills training for the next millennium. *Construction Management and Economics*, 16(5), 569–580.
<https://doi.org/10.1080/014461998372105>

Garrick, B. J. (1998). Technological stigmatism, risk perception, and truth. *Reliability Engineering and System Safety*, 59(1), 41–45. [https://doi.org/10.1016/S0951-8339\(98\)00005-4](https://doi.org/10.1016/S0951-8339(98)00005-4)

Ghobakhloo, M. (2018). The future of manufacturing industry: a strategic roadmap toward Industry 4.0. *Journal of Manufacturing Technology Management*, 29(6), 910–936. <https://doi.org/10.1108/JMTM-02-2018-0057>

Gupta, N., Fischer, A. R. H., & Frewer, L. J. (2012). Socio-psychological determinants of public acceptance of technologies: A review. *Public Understanding of Science (Bristol, England)*, 21(7), 782–795. <https://doi.org/10.1177/0963662510392485>

Hall, J., Bachor, V., & Matos, S. (2014). The impact of stakeholder heterogeneity on risk perceptions in technological innovation. *Technovation*, 34(8), 410–419. <https://doi.org/10.1016/j.technovation.2013.12.002>

Heinssen, R. K., Glass, C. R., & Knight, L. A. (1987). Assessing computer anxiety: Development and validation of the Computer Anxiety Rating Scale. *Computers in Human Behavior*, 3(1), 49–59. [https://doi.org/10.1016/0747-5632\(87\)90010-0](https://doi.org/10.1016/0747-5632(87)90010-0)

Ho, H., & Watanabe, T. (2018). The roles of three types of knowledge and perceived uncertainty in explaining risk perception, acceptability, and self-protective response — A case study on endocrine disrupting surfactants. *International Journal of Environmental Research and Public Health*, 15(2). <https://doi.org/10.3390/ijerph15020296>

Hsu, C. L., & Lin, J. C. C. (2018). Exploring factors affecting the adoption of internet of things services. *Journal of Computer Information Systems*, 58(1), 49–57. <https://doi.org/10.1080/08874417.2016.1186524>

Huang, D. L., Patrick Rau, P. L., Salvendy, G., Gao, F., & Zhou, J. (2011). Factors affecting perception of information security and their impacts on IT adoption and security practices. *International Journal of Human Computer Studies*, 69(12), 870–883. <https://doi.org/10.1016/j.ijhcs.2011.07.007>

Hung, H. C., & Wang, T. W. (2011). Determinants and Mapping of Collective Perceptions of Technological Risk: The Case of the Second Nuclear Power Plant in Taiwan. *Risk Analysis*, 31(4), 668–683. <https://doi.org/10.1111/j.1539-6924.2010.01539.x>

Hwang, B.-G., & Ng, W. J. (2013). Project management knowledge and skills for green construction: Overcoming challenges. *International Journal of Project Management*, 31(2), 272–284. <https://doi.org/10.1016/j.ijproman.2012.05.004>

Jabbour, A. B. L. de S., Jabbour, C. J. C., Foropon, C., & Filho, M. G. (2018). When titans meet – Can industry 4.0 revolutionise the environmentally-sustainable manufacturing wave? The role of critical success factors. *Technological Forecasting and Social Change*, 132, 18–25. <https://doi.org/10.1016/j.techfore.2018.01.017>

Jacquet, J. B., & Stedman, R. C. (2014). The risk of social-psychological disruption as an impact of energy development and environmental change. In *Journal of Environmental Planning and Management* (Vol. 57, Issue 9, pp. 1285–1304). Routledge. <https://doi.org/10.1080/09640568.2013.820174>

Kamble, S. S., Gunasekaran, A., & Gawankar, S. A. (2018). Sustainable Industry 4.0

framework: A systematic literature review identifying the current trends and future perspectives. *Process Safety and Environmental Protection*, 117, 408–425. <https://doi.org/10.1016/j.psep.2018.05.009>

Kim, D. Y., & Jung, J. (2019). Cultural attributes and risk perception: the moderating role of different types of research and development. *Journal of Risk Research*, 22(2), 161–176. <https://doi.org/10.1080/13669877.2017.1351475>

Larsson, S., Jansson, M., & Boholm, Å. (2019). Expert stakeholders' perception of nanotechnology: risk, benefit, knowledge, and regulation. *Journal of Nanoparticle Research*, 21(3), 1–17. <https://doi.org/10.1007/s11051-019-4498-1>

León-Pérez, F., Bas, M. C., & Escudero-Nahón, A. (2020). Self-perception about emerging digital skills in Higher Education students. *Comunicar*, 28(62), 89–98. <https://doi.org/10.3916/C62-2020-08>

Lu, X., Xie, X., & Liu, L. (2015). Inverted U-shaped model: How frequent repetition affects perceived risk. In *Judgment and Decision Making* (Vol. 10, Issue 3).

Lu, Y. (2017). Industry 4.0: A survey on technologies, applications and open research issues. *Journal of Industrial Information Integration*, 6, 1–10. <https://doi.org/10.1016/J.JII.2017.04.005>

Mathews, S. W., Maruyama, M., Sakurai, Y., Bebenroth, R., Luck, E., Chen, H. L., & Franco, E. (2018). Internet resources and capabilities: Japanese SME risk-taking, industry and performance. *Asia Pacific Business Review*, 24(5), 675–692. <https://doi.org/10.1080/13602381.2018.1492690>

Müller, J. M., Kiel, D., & Voigt, K. I. (2018). What drives the implementation of Industry 4.0? The role of opportunities and challenges in the context of sustainability. *Sustainability*, 10(1), 247–270. <https://doi.org/10.3390/su10010247>

Nelkin, D. (1989). Communicating Technological Risk: The Social Construction of Risk Perception. *Annual Review of Public Health*, 10(1), 95–113. <https://doi.org/10.1146/annurev.pu.10.050189.000523>

Nickell, G. S., & Pinto, J. N. (1986). The computer attitude scale. *Computers in Human Behavior*, 2(4), 301–306. [https://doi.org/10.1016/0747-5632\(86\)90010-5](https://doi.org/10.1016/0747-5632(86)90010-5)

Odusami, K. T. (2002). Perceptions of construction professionals concerning important skills of effective project leaders. *Journal of Management in Engineering*, 18(2), 61–67. [https://doi.org/10.1061/\(ASCE\)0742-597X\(2002\)18:2\(61\)](https://doi.org/10.1061/(ASCE)0742-597X(2002)18:2(61))

Oesterreich, T. D., & Teuteberg, F. (2016). Understanding the implications of digitisation and automation in the context of Industry 4.0: A triangulation approach and elements of a research agenda for the construction industry. *Computers in Industry*, 83, 121–139. <https://doi.org/10.1016/j.compind.2016.09.006>

Paluch, S., & Wunderlich, N. V. (2016). Contrasting risk perceptions of technology-based service innovations in inter-organizational settings. *Journal of Business Research*, 69(7), 2424–2431. <https://doi.org/10.1016/j.jbusres.2016.01.012>

Pereira, A. C., & Romero, F. (2017). A review of the meanings and the implications of the Industry 4.0 concept. *Procedia Manufacturing*, 13, 1206–1214. <https://doi.org/10.1016/j.promfg.2017.09.032>

Peters, E. M., Burraston, B., & Mertz, C. K. (2004). An emotion-based model of risk perception and stigma susceptibility: Cognitive appraisals of emotion, affective reactivity, worldviews, and risk perceptions in the generation of technological stigma. *Risk Analysis*, 24(5), 1349–1367. <https://doi.org/10.1111/j.0272-4332.2004.00531.x>

Project Management Institute. (2017). *A Guide to the Project Management Body of Knowledge* (Sixth Edit).

Raue, M., D'Ambrosio, L. A., Ward, C., Lee, C., Jacquillat, C., & Coughlin, J. F. (2019). The Influence of Feelings While Driving Regular Cars on the Perception and Acceptance of Self-Driving Cars. *Risk Analysis*, 39(2), 358–374. <https://doi.org/10.1111/risa.13267>

Renn, O., & Benighaus, C. (2013). Perception of technological risk: Insights from research and lessons for risk communication and management. *Journal of Risk Research*, 16(3–4), 293–313. <https://doi.org/10.1080/13669877.2012.729522>

Roper, S., & Tapinos, E. (2016). Taking risks in the face of uncertainty: An exploratory analysis of green innovation. *Technological Forecasting and Social Change*, 112, 357–363. <https://doi.org/10.1016/j.techfore.2016.07.037>

Sadeh, A., & Dvir, D. O. V. (2020). The effect of technological risk, market uncertainty and the level of complexity on new technology ventures' success. *International Journal of Innovation Management*, 24(5), 2050047. <https://doi.org/10.1142/S1363919620500474>

Savage, I. (1993). Demographic Influences on Risk Perceptions. *Risk Analysis*, 13(4), 413–420. <https://doi.org/10.1111/j.1539-6924.1993.tb00741.x>

Siegrist, M., Keller, C., Kastenholz, H., Frey, S., & Wiek, A. (2007). Laypeople's and Experts' Perception of Nanotechnology Hazards. *Risk Analysis*, 27(1), 59–69. <https://doi.org/10.1111/j.1539-6924.2006.00859.x>

Slovic, P. (2016). The perception of risk. In *Scientists Making a Difference: One Hundred Eminent Behavioral and Brain Scientists Talk about their Most Important Contributions* (pp. 179–182). Cambridge University Press. <https://doi.org/10.1017/CBO9781316422250.040>

Sokolowska, J., & Tyszka, T. (1995). Perception and Acceptance of Technological and Environmental Risks: Why Are Poor Countries Less Concerned? *Risk Analysis*, 15(6), 733–743. <https://doi.org/10.1111/j.1539-6924.1995.tb01345.x>

Stock, T., Obenaus, M., Kunz, S., & Kohl, H. (2018). Industry 4.0 as enabler for a sustainable development: A qualitative assessment of its ecological and social potential. *Process Safety and Environmental Protection*, 118, 254–267. <https://doi.org/10.1016/j.psep.2018.06.026>

Stoutenborough, J. W., & Vedlitz, A. (2016). The role of scientific knowledge in the public's perceptions of energy technology risks. *Energy Policy*, 96, 206–216. <https://doi.org/10.1016/j.enpol.2016.05.031>

Succar, B., Sher, W., & Williams, A. (2013). An integrated approach to BIM competency assessment, acquisition and application. *Automation in Construction*, 35, 174–189. <https://doi.org/10.1016/j.autcon.2013.05.016>

Tosun, J. (2017). On the sustained importance of attitudes toward technological risks and benefits in policy studies. *Policy Sciences*, 50(4), 563–572. <https://doi.org/10.1007/s11077-017-9298-9>

Udo, N., & Koppensteiner, S. (2004). Core Competencies of a Successful Project Manager Skill. *PMI Global Congress 2004*.

Van Deursen, A. J. A. M., & Mossberger, K. (2018). Any Thing for Anyone? A New Digital Divide in Internet-of-Things Skills. *Policy & Internet*, 10(2), 122–140. <https://doi.org/10.1002/poi3.171>

Van Laar, E., Van Deursen, A. J. A. M., Van Dijk, J. A. G. M., & De Haan, J. (2017). The relation between 21st-century skills and digital skills: A systematic literature review. *Computers in Human Behavior*, 72, 577–588. <https://doi.org/10.1016/j.chb.2017.03.010>

van Schaik, P., Jeske, D., Onibokun, J., Coventry, L., Jansen, J., & Kusev, P. (2017). Risk perceptions of cyber-security and precautionary behaviour. *Computers in Human Behavior*, 75, 547–559. <https://doi.org/10.1016/j.chb.2017.05.038>

Venkatesh, V. (2000). Determinants of Perceived Ease of Use: Integrating Control, Intrinsic Motivation, and Emotion into the Technology Acceptance Model. *Information Systems Research*, 11(4), 342–365. <https://doi.org/10.1287/isre.11.4.342.11872>

Venkatesh, V., & Bala, H. (2008). Technology Acceptance Model 3 and a Research Agenda on Interventions. *Decision Sciences*, 39(2), 273–315. <https://doi.org/10.1111/j.1540-5915.2008.00192.x>

Venkatesh, V., & Davis, F. D. (1996). A Model of the Antecedents of Perceived Ease of Use: Development and Test. *Decision Sciences*, 27(3), 451–481. <https://doi.org/10.1111/j.1540-5915.1996.tb00860.x>

Venkatesh, V., & Davis, F. D. (2000). Theoretical extension of the Technology Acceptance Model: Four longitudinal field studies. *Management Science*, 46(2), 186–204. <https://doi.org/10.1287/mnsc.46.2.186.11926>

Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User Acceptance of Information Technology: Toward a Unified View. *MIS Quarterly*, 27(3), 425–478. <https://doi.org/10.2307/30036540>

Voogt, J., & Roblin, N. P. (2012). A comparative analysis of international frameworks for 21st century competences: Implications for national curriculum policies. *Journal of Curriculum Studies*, 44(3), 299–321. <https://doi.org/10.1080/00220272.2012.668938>

Wang, S., & Zhao, J. (2019). Risk preference and adoption of autonomous vehicles. *Transportation Research Part A: Policy and Practice*, 126, 215–229. <https://doi.org/10.1016/j.tra.2019.06.007>

Weisenfeld, U., & Ott, I. (2011). Academic discipline and risk perception of technologies: An

empirical study. *Research Policy*, 40(3), 487–499.
<https://doi.org/10.1016/j.respol.2010.12.003>

Weller, J. A., Ceschi, A., & Randolph, C. (2015). Decision-making competence predicts domain-specific risk attitudes. *Frontiers in Psychology*, 6(MAY).
<https://doi.org/10.3389/fpsyg.2015.00540>

World Economic Forum. (2018). *The Future of Jobs*.

Xie, X. F., Wang, M., Zhang, R. G., Li, J., & Yu, Q. Y. (2011). The Role of Emotions in Risk Communication. *Risk Analysis*, 31(3), 450–465. <https://doi.org/10.1111/j.1539-6924.2010.01530.x>

Zhang, F., Zuo, J., & Zillante, G. (2013). Identification and evaluation of the key social competencies for Chinese construction project managers. *International Journal of Project Management*, 31(5), 748–759. <https://doi.org/10.1016/j.ijproman.2012.10.011>

Zhang, L., & Fan, W. (2013). Improving performance of construction projects: A project manager's emotional intelligence approach. *Engineering, Construction and Architectural Management*, 20(2), 195–207.
<https://doi.org/10.1108/09699981311303044>

Zuo, J., Zhao, X., Nguyen, Q. B. M., Ma, T., & Gao, S. (2018). Soft skills of construction project management professionals and project success factors: A structural equation model. *Engineering, Construction and Architectural Management*, 25(3), 425–442.
<https://doi.org/10.1108/ECAM-01-2016-0016>